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Outline 

!    What is LIS? – motivation, heritage 

!    Software architecture, design paradigms 

!    Source code, repository, software requirements 

!    LIS version 7 – upcoming features 

!    Two new toolkits that accompany LIS – LDT and LVT.  



What is LIS?	


•  A system to study land 
surface processes and land-
atmosphere interactions 

•  “Use best available 
observations” to force and 
constrain the models 

•  Applications: Weather and 
climate model initialization, 
water resources 
management, natural 
hazards management 



!   Need a system viable at different 
spatial and temporal scales  

!    Be able to demonstrate the impact of 
observations at the scale of 
observations themselves 

!   Explicit characterization of the land 
surface at the same spatial scales as 
that of cloud and precipitation 
processes helps in improving the 
characterization of land-atmosphere 
interactions 

!   Need scalable, high performance computing support to deal with computational 
challenges 

!   Need advanced land surface models and modeling tools (data assimilation, 
optimization, uncertainty modeling)  



LIS - heritage 
!   LIS is a land surface modeling and data 

assimilation system (LDAS)  

!   Capable of modeling at different spatial scales, 
globally and regionally 

North American LDAS 
1/8th degree spatial 
resolution 

Global LDAS 
1/4th degree spatial resolution 

LIS 
global, regional, point 
up to 1km and finer 

Kumar et al. (2006): Land Information System: An interoperable Framework for High Resolution Land Surface Modeling, 
Environmental Modeling and Software, Vol 21, pp 1402-1415. 

Peter-Lidard et al. (2007): High-performance earth system modeling with NASA/GSFC’s Land Information System, 
Innovations in Systems and Software Engineering, 3(3),157—165.



LIS modes of operation 

Land Surface Models (Noah, 
CLM, Catchment, JULES, 

TESSEL, HySSIB, Sacramento, 
SNOW17)

Water and Energy 
Fluxes, Soil Moisture and 

Temperature profiles, 
Land surface states

Parameters
(Topography, Soil 

properties, vegetation 
properties)

Meteorological 
Boundary Conditions 

(Forcings)

States (Soil Moisture, 
Snow, Skin 

Temperature)

LIS - OPT/UE

Optimization and Uncertainty Estimation
(LM, GA, RW-MCMC, DEMC)

Hydrologic 
Forecasts

Coupled or 
Forecast Mode

WRF

LIS - WRF
InterfaceData Assimilation  (DI, EnKF)

LIS - DA

Observations (Soil 
Moisture, Snow, Skin 

Temperature)



Soil Moisture
Evaporation

Sensible Heat Flux
Runoff

Snowpack 
properties

LIS - APP

LIS - Outputs

Weather

Landslides

Floods

Drought

Agriculture

LIS subsystems and toolkits 

Radiative Transfer 
Models 

(CMEM,CRTM)

LIS - RTM

Observations

Data Assimilation  
(DI,EnKF)

LIS - DA

Land Surface Models 
(Noah, CLM, Catchment, 

TESSEL, JULES)

LIS - LSMLIS - OPT

Optimization 
(LM, GA, SCE-UA)

Parameters

Meteorological 
Forecasts, Analysis, 

Observations

LIS - UE

Uncertainty Estimation 
(MCMC,DEMC)

Parameters

LDT

LDT

Land surface parameter processing
DA/OPTUE preprocessing

Downscaling support
Forcing adjustments (bias correction)

Restart/ensemble generation

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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We gratefully acknowledge the financial support from the US Air Force Weather Agency 
(AFWA) and the NASA Earth Science Technology Office (ESTO)."
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Kumar, S.V., C.D. Peters-Lidard, J.A. Santanello, K.W. Harrison, Yuqiong Liu and Michael Shaw (2012), “Land surface Verification Toolkit (LVT): A generalized framework for land surface model evaluation, submitted to Geosci. Model. Dev."

LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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LIS software architecture 

Driver layer


Abstractions layer


Model layer


Land Surface 
Model

Running 
Mode

 Meteorological
Inputs

Domains Data
Assimilation

Land 
Surface

Parameters
OptimizationRTM Uncertainty

Estimation
Applications Routing

Noah
CLM

Catchment
Hyssib

Sacramento
SNOW17
HTESSEL
JULES

Analysis
Forecast
Coupled
Optimization

NLDAS
GDAS
CMAP
CMORPH
ECMWF
AGRMET
GEOS
TRMM

Landcover (UMD, USGS, 
MODIS)

Soils (FAO, STATSGO)
Topography (USGS)

LAI (AVHRR/MODIS)
Greenness (AVHRR/MODIS)

Albedo (AVHRR/MODIS)

Lat/lon
Gaussian

Lambert Conformal
Mercator

Polar Stereographic
UTM

CRTM
CRTM2E
CMEM
HUT

Direct Insertion
EnKF

LM
GA

MC-SIM
RW-MCMC
DEMC

Landslide 
models

Crop models

NLDAS 
router

HYMAP
NDHMS



LIS software architecture 

Driver layer


Abstractions layer


Model layer


Land Surface 
Model

Running 
Mode

 Meteorological
Inputs

Domains Data
Assimilation

Land 
Surface

Parameters
OptimizationRTM Uncertainty

Estimation
Applications Routing

Noah
CLM

Catchment
Hyssib

Sacramento
SNOW17
HTESSEL
JULES

Analysis
Forecast
Coupled
Optimization

NLDAS
GDAS
CMAP
CMORPH
ECMWF
AGRMET
GEOS
TRMM

Landcover (UMD, USGS, 
MODIS)

Soils (FAO, STATSGO)
Topography (USGS)

LAI (AVHRR/MODIS)
Greenness (AVHRR/MODIS)

Albedo (AVHRR/MODIS)

Lat/lon
Gaussian

Lambert Conformal
Mercator

Polar Stereographic
UTM

CRTM
CRTM2E
CMEM
HUT

Direct Insertion
EnKF

LM
GA

MC-SIM
RW-MCMC
DEMC

Landslide 
models

Crop models

NLDAS 
router

HYMAP
NDHMS

ESMF_State 
objects



What is ESMF? 

!  Software for building and coupling 
weather, climate and related models 

!  Provides representations of Earth 
system grids, tools for mapping between 
them in multiprocessor environment 

!  Includes toolkits for building 
applications: time manager, error 
handling, resource management, parallel 
communications 

!  An application once it is wrapped with 
ESMF is known as a “Gridded 
component”  

!  Gridded components are coupled using 
“coupler components” 

ATM 	

(WRF)	


Land	

(LIS)	




Key ESMF objects 

!   ESMF_Grid - representation 
of a grid 

!   ESMF_State - objects that 
hold gridded data 

!   ESMF_State consists of 
ESMF_Field, ESMF_Bundle, 
ESMF_Array 

!   Data is exchanged between 
ESMF Gridded components 
using ESMF_States  

ESMF_Field	


ESMF_Bundle	


ESMF_Array	




Object Oriented Programming 

States and Behavior	


 Gear	

Speed	


Pedal stance	


change gear	

apply brakes	


speed up	


!   Think Objects  

!   Modularity : Source code for an object, 
written and maintained independent of the 
source code  for other objects 

!   Reusability: if the object already exists, you 
can use that object in your application 

!   Extensibility: Can be customized for new 
applications 

!   Inversion of Control - “Don’t call us, we’ll 
call you” 

!   Generic code controls execution of problem-
specific code 



Customization: How do we add a new 
LSM? 

!  Need to implement a set 
of interfaces related to 
the operation of a land 
surface model 

!  In LIS, these abstract 
implementations are 
known as “plugins” 

!  under src/plugins  



How do we add a new forcing 
scheme? 

!  Extend the abstract 
interfaces related to a 
forcing scheme 



Combining these components 

•  LIS provides the “wirings” 
between the abstract 
implementations 

•  Incorporating these 
components through 
plugins automatically 
ensure their integrated 
and interoperable use 

Forcing_state



LIS source code 
http:://lis.gsfc.nasa.gov	
 http:://modelingguru.nasa.gov	




Software Requirements 

!   Fortran 90/95 compiler (g95 will not work for LIS5.0)  

!   preferred : intel, pgi, lahey, absoft 

!   C compiler 

!   MPI - if parallel processing capability is desired 

!   Earth System Modeling Framework (ESMF) 

!   5.x – for LIS 7.0 

!   LIS supports Grib1, NETCDF, HDF formats  

!   NETCDF- mandatory, Grib, HDF optional 

LIS cookbook




LIS Documentation 

!  User’s guide 

• Step-by-step instructions on how to 
build the LIS code 

!  Developer’s guide 

• Instructions on how to bring in new 
functionalities (LSMs, forcing schemes, 
Data Assimilation, parameter data, etc.) 

!  Reference manual 



Getting LIS source 

!  Use the subversion repository (
https://progress.nccs.nasa.gov) 

!  Apply for an account  

(christa.d.peters-lidard@nasa.gov) 

!  Request a “Project Release” of the LIS 
code                                  (
http://lis.gsfc.nasa.gov/register.shtml) 

!  Download the tarball (Internal users who 
use the repository can check out the 
appropriate branch) 



LIS source code repository 
!   Helpful links 

• http://subversion.tigris.org/ 

• http://svnbook.red-bean.com/ 

!   Check out the LIS code: 

• svn co https://progress.nccs.nasa.gov/svn/lis/ src 

5.0	


Public	
 Internal	


6.0	


Public	
 Dev	
 AFWA	


7.0	


Public	
 Dev	
 AFWA	


FEWS
NET	


NOHR
SC	




The	  Land	  surface	  Data	  Toolkit	  (LDT):	  	  
Overview	  and	  Examples	  

The	  “preprocessor”	  to	  LIS-‐7	  
July	  9,	  2014	  



The	  Land	  Data	  Toolkit	  (LDT)	  
•  A	  new	  preprocessing	  toolkit	  for	  LIS’s	  model	  
parameters	  
– Processes	  and	  groups	  parameters	  needed	  for	  each	  
land	  surface	  model	  (LSM)	  

– MulQple	  processing	  opQons	  	  

•  ObservaQon-‐based	  data	  assimilaQon	  opQons	  
– CDF-‐matching,	  etc.	  

•  Generate	  custom-‐made	  restart	  files	  for	  LSMs	  
– e.g.,	  ensemble-‐based	  restart	  files	  

7/9/14	   LDT	  Overview	   22	  



LDT	  Parameter	  Preprocessing	  
•  Offers	  subseZng,	  reprojecQng,	  aggregaQng/	  
downscaling	  and	  new	  Qling	  opQons	  for	  parameter	  
files	  onto	  the	  targeted	  LIS-‐7	  grid	  and	  domain;	  

•  Group	  parameter	  files	  together	  in	  to	  a	  common	  
Netcdf	  4	  file,	  which	  includes	  header	  and	  grid	  
informaQon	  for	  the	  data	  layers;	  

•  This	  grouped	  netcdf	  file	  can	  then	  be	  easily	  loaded	  
and	  read	  by	  LIS-‐7	  at	  run-‐Qme;	  

•  Building	  into	  LDT	  also	  LSM	  run-‐Qme	  checks	  (e.g.,	  
correct	  parameters	  selected)	  and	  parameter	  
staQsQcs	  (e.g.,	  land/water	  mask	  gridcell	  effects)	  	  

7/9/14	   LDT	  Overview	   23	  



The	  Land	  Data	  Toolkit	  (LDT):	  
for	  Parameter	  Processing	  

Parameter	  
Inputs:	  

Landmask	  

Landcover	  

ElevaQon	  

Soils	  data	  

Domain	  
InformaQon:	  

LIS	  Target	  
Domain	  and	  
ProjecQon	  	  

Individual	  
Parameter	  
Grid	  Info	  

e.g.,	  NLDAS	  
domain	  

LDT	  Output:	  

LIS	  Target	  
Domain	  and	  
ProjecQon	  	  

One	  netcdf	  
file	  that	  gets	  
read	  by	  LIS	  

Netcdf	  files	  can	  
be	  generated	  
for	  each	  model,	  

set	  of	  
parameters,	  etc.	  

LSM	  Parms:	  

Noah	  LSM	  

VIC	  

Catchment	  
LSM	  

Others	  …	  

7/9/14	   LDT	  Overview	   24	  



LDT	  DA	  ObservaQons	  Processing	  
For	  DA	  preprocessing,	  3	  op0ons	  are	  supported:	  	  

•  Generate	  cumulaQve	  density	  funcQons	  (CDFs)	  
è	  for	  CDF	  scaling	  of	  observaQons	  within	  LIS;	  

•  Generate	  mean	  and	  standard	  deviaQons	  for	  
normal-‐deviate	  based	  scaling	  within	  LIS;	  

•  Anomaly	  correcQon	  to	  observaQons	  (for	  
GRACE-‐DA	  primarily).	  	  

7/9/14	   LDT	  Overview	   25	  



LDT	  Restart	  File	  GeneraQon	  
(featuring	  ensemble	  restart	  genera0on)	  

•  For	  ensemble	  restarts,	  two	  current	  opQons:	  
– Upscaling:	  	  going	  from	  one	  to	  many	  ensemble	  
members,	  and	  	  	  

– Downscaling:	  	  going	  from	  many	  members	  to	  one.	  	  	  

•  Future	  restart	  generaQon	  opQons	  may	  
include:	  
– Climatological	  restart	  generaQon,	  	  
– SpaQal	  aggregaQon/downscaling	  of	  exisQng	  restart	  
files	  

7/9/14	   LDT	  Overview	   26	  



Other	  LDT	  features	  (as	  originally	  in	  LIS)	  
•  Writes	  run-‐Qme	  diagnosQc	  informaQon	  to	  a	  log	  
file,	  like	  in	  LIS;	  

•  Handle	  different	  LIS	  projecQons	  (all	  interp	  
rouQnes	  as	  available	  in	  LIS):	  
–  Lat-‐lon,	  Lambert,	  Polar	  stereographic,	  etc.	  	  

•  Work	  with	  mulQple	  member	  ensembles;	  
•  Working	  toward	  reading	  in	  all	  original	  LSM	  
parameter	  files	  (of	  LSMs	  available	  in	  LIS-‐7);	  

•  Run	  mulQple	  domain	  nests	  	  
•  Future	  addi0ons:	  	  Parallel	  processing	  …	  
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Current	  LDT	  CapabiliQes	  
1.  SQll	  able	  to	  read	  in	  original	  “LIS-‐produced”	  parameter	  and	  

observaQon	  files	  with	  binary	  format	  of:	  
§  Direct-‐access,	  4-‐byte	  real,	  big-‐endian	  binary	  …	  

§  Lat-‐lon	  gridded	  files	  with	  resoluQons	  starQng	  at	  0.01°	  (1-‐KM),	  
which	  can	  be	  aggregated	  to	  other	  coarser	  resoluQons	  and	  
projecQons;	  

2.  Moving	  towards	  reading	  in	  all	  “naQve”	  or	  “raw”	  parameter	  
files,	  obtained	  from	  the	  original	  insQtuQonal	  source	  	  

3.  Checks	  performed	  on	  parameter	  file	  processing;	  
-‐-‐	  e.g.,	  Ensure	  land	  cover	  and	  mask	  match	  correctly;	  	  (sand+silt+clay)	  
fracQons	  ==	  1	  

-‐-‐	  e.g.,	  Parameter-‐landmask	  land/water	  agreement.	  	  	  	  	  
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Current	  Features	  

Main	  LDT	  ConfiguraQon	  File	  OpQons	  
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LDT	  Op0on	   Op0on	   Descrip0on	  

LDT	  Running	  
Mode:	  

LSM	  parameter	  processing	  
Processes	  the	  parameters	  required	  
for	  a	  given	  model	  run	  within	  LIS	  and	  
outputs	  to	  a	  common	  netcdf	  file	  

DA	  preprocessing	  

Prepares	  certain	  bias	  correcQon	  
staQsQcs	  and	  observaQon	  
processing	  for	  data	  assimilaQon	  
(DA)	  runs	  in	  LIS	  

Ensemble	  restart	  processing	   Generates	  ensemble	  restart	  files,	  
e.g.,	  netcdf-‐4	  file	  with	  header	  info	  

LSM	  parameter	  
a=ributes	  file:	   e.g.,	  param_aEribs.txt	  

Parameter	  amributes	  file	  which	  
contains	  many	  parameter	  label	  and	  
dimension	  opQons	  

Processed	  LSM	  
parameter	  
filename:	  

e.g.,	  lis_input.d01.nc	  
Generated	  LSM	  parameter	  file	  in	  
netcdf-‐4	  format,	  required	  for	  
running	  LIS-‐7.	  

LDT	  Main	  Run	  Modes	  
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LDT	  Op0on	   Op0on	   Descrip0on	  

Map	  projec0on	  
of	  the	  LIS	  
domain:	  

latlon,	  lambert,	  polar,	  
hrap,	  gaussian,	  mercator	  

Different	  output	  projecQon	  
opQons	  on	  which	  to	  write	  the	  
parameters	  for	  a	  LIS	  experiment.	  

Lat/Lon	  Rectangular	  Grid	  Dimensions	  (Extents)	  

Run	  domain	  
lower	  leG	  lat/lon:	   e.g.,	  40.125;	  	  -‐94.875	  

Enter	  the	  lowest-‐len	  corner	  extent	  
laQtude	  and	  longitude	  values	  for	  
your	  LIS	  target	  grid	  

Run	  domain	  
upper	  right	  lat/

lon:	  
e.g.,	  49.875;	  	  -‐75.125	  

Enter	  the	  upper-‐right	  corner	  
extent	  laQtude	  and	  longitude	  
values	  for	  your	  LIS	  target	  grid	  

Run	  domain	  
resolu0on	  (dx/

dy)	  
e.g.,	  0.25;	  0.25	  

Enter	  the	  x-‐	  and	  y-‐direcQon	  
gridcell	  resoluQon	  for	  your	  LIS	  
target	  grid	  
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The	  LDT.config	  file	  
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LDT	  Op0on	   Op0on	   Descrip0on	  

Land	  cover	  
classifica0on:	  

UMD,	  IGBPNCEP,	  USGS,	  and	  
others	  

Enter	  the	  land	  cover/land	  use	  
classificaQon	  scheme,	  which	  varies	  
with	  different	  sources	  	  

Create	  or	  readin	  
landmask:	  

create	   Creates	  a	  landmask	  from	  the	  
landcover	  file	  

readin	  
Reads	  in	  a	  landmask	  file;	  future	  
releases	  will	  include	  more	  opQons	  
to	  impose	  mask	  on	  parameter	  files	  	  

landcover	  map	  
projec0on:	  

latlon,	  and	  others	  
(depending	  on	  the	  
parameter	  read	  in)	  

ProjecQon/grid	  type	  for	  the	  input	  
land	  cover	  parameter	  file.	  

landcover	  
spa0al	  

transform:	  

e.g.,	  0le,	  mode,	  nearest	  
neighbor	  

Mode	  for	  transforming	  the	  input	  
parameter	  projecQon/grid	  to	  the	  
LIS	  output	  (run-‐Qme)	  grid	  	  

landcover	  [grid-‐
domain	  inputs]:	  

For	  example,	  
Landcover	  lower	  leX	  lat:	  	  	  	  -‐59.995	  
Landcover	  lower	  leX	  lon:	  	  	  -‐179.995	  

Similar	  to	  how	  LIS	  run	  domain	  
extents	  were	  specified	  

Land	  cover	  and	  mask	  opQons	  
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The	  LDT.config	  file	  (con’t.)	  



7/9/14	   35	  

The	  LDT.config	  file	  (con’t.)	  



Current	  LDT	  Processing	  of	  Landcover	  and	  Masks	  

q 	  Can	  read	  in	  landcover	  and	  
mask	  and	  subset	  to	  desired	  
LIS	  target	  output	  grid	  
(current	  approach	  in	  LIS-‐6)	  

1

Two	  Major	  User-‐Given	  Op0ons	  	  

1.	  	  Parameters	  on	  SAME	  grid/	  
resolu0on	  as	  LIS	  target	  output	  grid	  

2.	  	  Parameters	  on	  DIFFERENT	  grid/	  
resolu0on	  as	  LIS	  target	  output	  grid	  

q 	  Read	  in	  landcover	  	  (e.g.,	  @	  1	  
km	  res.)	  and	  aggregate	  or	  
interpolate	  to	  LIS	  target	  grid	  

1

q 	  Create	  new	  land/water	  
mask	  from	  new	  mapped-‐to-‐
LIS-‐grid	  land	  cover	  field	  

2

q 	  Apply	  mask	  to	  subsequent	  
rouQnes	  and	  parameters	  

3

q 	  Apply	  mask	  to	  subsequent	  
rouQnes	  and	  parameters	  

2
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LDT	  Op0on	   Op0on	   Descrip0on	  

[Parameter]	  
spa0al	  

transform*:	  

none	   No	  scaling	  or	  transformaQon	  needed.	  

average	   Average	  finer	  resoluQon	  grid	  to	  coarser	  
scale	  one	  (upscale).	  

mode	   Select	  dominant	  (mode)	  of	  finer	  scale	  
gridcells	  to	  coarser	  one	  (upscale).	  

0le	   Apply	  accounQng	  system	  for	  esQmaQng	  
coarser	  sub-‐grid	  “Qles”	  for	  output	  grid.	  	  	  

neighbor	   Apply	  nearest	  neighbor	  method	  to	  input	  
grid	  (upscale/downscale).	  

bilinear	   Apply	  bilinear	  interpolaQon	  method	  to	  
input	  grid	  (upscale/downscale).	  	  	  

budget-‐bilinear	  
Apply	  conservaQve	  “budget”	  bilinear	  
interpolaQon	  method	  to	  input	  grid	  
(upscale/downscale).	  	  	  

*	  NOTE:	  	  Not	  all	  opGons	  available	  yet	  for	  all	  parameters.	  

SpaQal	  Transform	  OpQons	  
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LDT	  Op0on	   Op0on	   Descrip0on	  

Land	  cover	   Number	  of	  vegeta0on	  0les	   Derives	  fracQons	  for	  vegetaQon	  
type-‐Qles	  (summing	  to	  100%)	  

Lake	  surface	   Number	  of	  lakes	  (as	  relates	  
to	  FLake	  at	  this	  0me)	  

Lake	  fracQons	  can	  be	  esQmated	  
from	  lake	  depth	  or	  lake	  type	  

Soil	  frac0ons	   Frac0on	  of	  sand,	  silt	  and	  clay	   Soil	  fracQon	  bins	  (or	  Qles)	  along	  
with	  average	  fracQons	  per	  bin	  

Soil	  texture	   Soil	  texture	  0les	   Derives	  fracQons	  for	  soil	  texture	  
types	  

Eleva0on	   Eleva0on	  0les	  (aka,	  “bands”)	   Average	  elevaQons	  associated	  
with	  ranked	  Qles	  or	  “bands”	  	  

Slope,	  Aspect	   Tile	  frac0ons	  and	  associated	  
average	  slope	  or	  average	  aspect	  

Average	  slope	  or	  aspect	  
associated	  with	  ranked	  Qles	  

Fields	  that	  can	  be	  Qled	  (or	  binned)	  …	  
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The	  param_aLribs.txt	  file	  example	  

LIS-‐team	  processed	  (aka,	  “LIS-‐data”)	  parameters	  

The	  parameter	  a=ributes	  table	  (param_a=ribs.txt)	  allows	  the	  user	  to	  
select	  different	  op0ons	  for	  a	  given	  parameter	  type,	  including	  

dis0nguishing	  between	  “LIS-‐data”	  and	  “Na0ve”	  parameter	  data	  types.	  



LDT	  DA	  Obs	  Inputs	  
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•  Inputs:	  	  	  
–  Enter	  DA	  observaQon	  type	  (several	  opQons)	  
–  Specify	  the	  number	  of	  bins	  to	  esQmate	  the	  CDF	  
–  Different	  temporal	  and	  spaQal	  map	  (mask)	  opQons	  for	  CDF	  
stats	  

–  ObservaQon	  count	  in	  esQmaQon	  



LDT	  Examples	  

HighlighQng	  new	  and	  unique	  
features	  of	  LDT	  and	  LIS-‐7	  inputs	  
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Example	  NetCDF	  Output	  	  
(e.g.,	  lis_input.d01.nc)	  
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Parameter	  Tiling	  Examples	  
ElevaQon	  banding	  example	  (5	  bins)	  for	  Afghanistan-‐Pakistan	  region	  (0.25	  deg	  lat-‐lon	  grid)	  
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Slope	  and	  Aspect	  Tiling	  Examples	  
Slope,	  aspect	  banding	  examples,	  Afghanistan-‐Pakistan	  region	  (0.25	  deg	  lat-‐lon	  grid)	  

Bin 3 of 
4 total
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DA	  ObservaQons	  Examples	  
•  LDT	  outputs	  an	  effecQve	  mask	  file	  and	  a	  file	  with	  
scaling	  parameters.	  	  
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Climate	  Downscaling	  Examples	  

LDT	  can	  process	  and	  aggregate	  ~1	  KM	  
PRISM	  or	  WorldClim	  precipitaQon	  
monthly	  climatologies	  to	  any	  LSM	  
domain	  and	  meteorological	  forcing	  
source	  (e.g.,	  AGRMET	  grid)	  …	  

0.25°	  AGRMET	  Grid	  

0.01°	  LIS-‐7	  LSM	  Grid	  

WorldClim	  
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IrrigaQon	  and	  Crop	  type	  Examples	  
UMD+CROPMAP	  dominant	  crop	  
categories	  derived	  from	  crop	  census	  
databases	  (see	  Ozdogan	  et	  al.	  2010).	  

Ozdogan	  et	  al.,	  2010,	  SimulaQng	  the	  effects	  of	  irrigaQon	  over	  the	  U.S.	  in	  a	  land	  surface	  model	  based	  on	  satellite-‐
derived	  agricultural	  data,	  J.	  Hydromet.,	  11,	  171-‐184.	  

MODIS-‐based	  irrigaQon	  percent	  for	  
each	  0.125	  deg	  gridcell,	  circa	  2001	  
(see	  Ozdogan	  et	  al.	  2010).	  
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Mask	  (and	  Regional	  Mask)	  Examples	  
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Parameter-‐Mask	  Consistency	  Check	  Example	  
LDT	  ensures	  consistency	  between	  the	  landmask	  and	  parameter	  files.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
For	  example,	  LDT	  modifies	  the	  NCEP/NCAR	  global	  STATSGO	  soil	  texture	  file’s	  
built-‐in	  land/water	  mask	  to	  match	  the	  UMD	  land-‐mask.	  	  	  	  

Difference	  between	  original	  and	  re-‐masked	  soil	  
texture	  

Original	  

Remasked	  

LDT	  Overview	  

Remasked	  



Summary	  
•  The	  Land	  surface	  Data	  Toolkit	  (LDT)	  is	  a	  new	  
preprocessing	  toolkit	  for	  LIS-‐7’s	  model	  
parameters	  and	  DA	  inputs.	  

•  LDT	  offers	  several	  features:	  
– MulQple	  parameter	  processing	  opQons;	  	  
– ObservaQon-‐based	  DA	  opQons	  (e.g.,	  CDF-‐
matching);	  

– Generates	  ensemble-‐based	  restart	  files	  
•  LDT	  supports	  a	  variety	  of	  opQons,	  like	  
parameter	  Qling,	  and	  parameter	  data	  types,	  like	  
irrigaQon	  maps	  and	  lake	  model	  data	  	  
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Future	  Work	  
•  Add	  generic	  capability	  to	  bias	  correct	  forcing	  
variables	  (e.g.,	  precipitaQon).	  	  

•  The	  ability	  to	  process	  OPTUE	  outputs	  for	  use	  in	  a	  
subsequent	  LIS	  run.	  

•  Implement	  observaQonal	  correcQon	  strategies	  used	  
(Cressman,	  OI)	  into	  LDT	  -‐-‐	  for	  updaQng	  snow	  (and	  
possibly	  other)	  data	  sources.	  	  

•  Add	  a	  layer	  of	  machine	  learning	  tools	  (ANN/Bayesian	  
classifier)	  that	  will	  enable	  the	  blending	  of	  different	  
observaQonal	  sources	  (e.g.,	  reprocess	  LPRM	  against	  
in-‐situ	  data).	  
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Future	  Work	  
•  Apply	  HYMAP	  (“Hydrological	  Mapping”)	  parameter	  
processing	  for	  hydrological	  modeling	  applicaQons.	  

•  Implement	  original	  LSM	  parameter	  preprocessing	  
code	  (e.g.,	  for	  CLSM,	  VIC,	  etc.).	  

•  Improve	  computaQonal	  I/O	  (e.g.,	  parallel	  netcdf	  and	  
other	  opQons).	  	  

•  Replace	  the	  spaQal	  interpolaQon	  code	  with	  ESMF	  
(would	  be	  major	  change	  also	  needed	  by	  LIS	  and	  LVT).	  
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LIS7 capabilities and features  



New Land surface models 

•  VIC(4.1.1, 4.1.2) 
•  CABLE 

•  Catchment (Fortuna 5.2) 

•  SAC-HTET 

•  Noah (2.7.1, 3.3, 3.4, MP) 

•  GeoWRSI 

•  FASST 

•  SiB2, HySSIB 

•  CLM2 

•  HTESSEL 

•  Mosaic 

•  JULES 

•  CLM4.5 

•  SHEELS 

•  FLake  

•  Noah-urban 



Support for surface models  

•  LIS7 will allow multiple “surface” models in 
addition to land surface models.  
–  E.g. A domain could consist of  land points 

(running land surface models), lake points 
(running lake models) and wetland points 
(running wetland models).  

–  LIS would aggregate and “quilt” the outputs 
from these different model types into a single 
output structure.  

–  LIS7 includes the definition of  “patchy 
domains” that represent the sub-domains that 
run surface models 

Land
Lake

Wetland



Flexible subgrid tiling options 
•  LIS6 follows the strategy of  tiling 

based on vegetation distribution 
alone and ignores the sub-grid 
heterogeneity of  other land 
surface parameters (soils, 
topography etc.) 

•  LIS7 allows the tiling space to be 
determined by other land surface 
characteristics (e.g. soil texture, 
elevation, slope, aspect, etc.) 

•  Depending on the domain, users 
can select characteristics to define 
tiling by: (e.g. tile by vegetation and 
elevation).  

•  Required data preprocessing done 
through LDT 
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Forcings 

•  Forcing structure has been modified to allow for 
more flexible data transformations 
–  Supports overlays 
–  Supports forcing ensembles 
– Allows for online bias-correction 

•  No more “base” and “supplemental” forcings. 
Everything is a “met” forcing and they can be 
overlaid in the order in which the user chooses.   
– LIS6 only allows the overlay of  supplemental forcings 

and not baseforcings.  



Data Assimilation 

•  Includes support for smoothing algorithms (e.g. ensemble 
kalman smoother) 

•  Support for multiple data products: AMSR-E, SMMR, SSM/
I, ECV, ASCAT, GRACE.  

•  Options for specifying spatially varying error parameters 
•  Support for radiance assimilation.  
•  A new implementation of  a fast fourier transform and 

supports horizontal correlations.  
 



Optimization and Uncertainty Estimation 

•  The new structure allows for the concurrent 
parameter estimation across different model 
classes. 
– E.g. parameter estimation of  both LSM and RTM 

parameters against both soil moisture and Brightness 
temperature observations.  

 



Routing 

•  Includes a suite of  routing algorithms 
– Source-to-sink methods: NLDAS router, HYMAP 
– Models that includes lateral transport of  soil 

moisture (and feedback to the model states): 
NDHMS 

•  Associated topographical processing will be 
supported through LDT  



A new build system  

•  A perl-based 
build system 

•  Prompts the 
user for the 
choice of  
libraries, 
compile time 
options.  



External libraries used in LIS 

•  Uses ESMF5 series – backward compatibility is ensured.  
–  Can use newer releases of  ESMF without interface/code changes in 

LIS.  
•  Grib – consolidated the use of  3 different grib libraries (NCEP, AFWA, 

NCAR) with the ECMWF developed grib-api library. 
–  Includes a documented F90 API – grib-api 
–  Supports both grib1 and grib2 
–  No need to distribute libraries with LIS 

•  LIS7 supports NETCDF4 (and NETCDF3) with options for data 
compression. 
–  NETCDF output follows the CF and COARDS conventions.  

•  HDF5 and HDF4  
–  Optional, used only for reading certain remote sensing datasets 

 
 



Time handling 

•  LIS7 includes support for ‘variable timestepping’ 
–  Each component (LSM, Forcing, RTM, etc.) sets its own 

internal timestep.  
–  LIS computes the minimum timestep among these 

components as the timestep for the global clock 
–  This enables automatic temporal aggregation of  forcings if  the 

LSM is run at a timestep greater than the forcing timestep.  

•  The use of  ESMF-based alarms are eliminated  
–  So that synoptic/monthly/weekly alarm intervals can be 

handled more easily 
–  Resetting/Looping of  the global clock can be handled more 

easily.  
–  Allows better nesting support while coupling to WRF.  



Configuration 
•  The C-function tables have been changed from an array 

structure to a linked list structure 
–  This eliminates the need for hardcoded array sizes for C-

based function tables 
–  This also enables the use of  strings as keys to store functions 

in the C-tables. This leads to a more intuitive lis.config 
interface:  

•  Eg: 



Misc 

•  Options for spatial downscaling (slope-aspect correction 
of  radiation, PRISM/WorldClim-based downscaling of  
precipitation) 

•  Support for irrigation modeling 
•  The restart files are written in NETCDF4 formats (as an 

option) 
•  Better support for higher compiler optimization levels 
•  The default 5-level hierarchy of  LIS outputs will be 

changed to a 3-level hierarchy (OUTPUT/MODEL/
YEARMONTH) 



Land	  surface	  VerificaQon	  Toolkit	  
(LVT)	  

!   LVT is a framework developed to provide an automated, consolidated environment for 
systematic land surface model evaluation 

!   Includes support for a range of in-situ, remote-sensing and other model and reanalysis 
products.  

!   Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-
OPT, LIS-UE 

Kumar et al. (2012), Land surface Verification Toolkit (LVT) – A generalized framework for land surface model evaluation, Geosci. Model. Dev.  



Design	  of	  LVT	  

!   Designed as a stand-alone system; Analysis instances are enabled by specifying a 
configuration file (much like LIS). No external scripting is required.  

!   Designed as an object-oriented framework with extensible features enabled for  

!   Specifying new metrics 

!   Specifying new observational datasets.  
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Fig. 2. Three-layer software architecture of Land surface Verification Toolkit (LVT).

in-situ and remote sensing measurements are presented in
Rodell et al. (2004a) and Kato et al. (2007). The LandFlux-
EVAL project, a more recent initiative, evaluated evapotran-
spiration estimates from a number of LSMs against in-situ
data based estimates (Jiminez et al., 2011). Approaches to
define a minimum acceptable performance benchmark of
LSMs by comparing them to calibrated noncausal (statisti-
cal/correlational) models are explored in Abramowitz et al.
(2008). Though these efforts cover a wide spectrum of model
evaluation and benchmarking of model process advance-
ments, the evaluation criteria and the performance metrics
tend to be specific to each application. LVT consolidates the
requirements identified in these efforts within a single frame-
work.
A number of software environments for conducting model

verification has been reported in the literature. The Ensem-
ble Verification System (EVS; Brown et al., 2010) developed
at the US National Oceanic and Atmospheric Administra-
tion’s (NOAA) Office of Hydrologic Development (OHD)
provides an environment to verify ensemble forecasts of
hydrologic and atmospheric variables such as precipitation,
temperature and streamflow, and is used by forecasters at the
US River Forecast Centers (RFCs). Protocol for the Anal-
ysis of Land Surface models (PALS) is a web-based appli-
cation for evaluating land surface models against observed
datasets and calibrated statistical models (Abramowitz et al.,
2008). LVT and PALS will continue to be developed con-
currently to address community goals for benchmarking and
MDF. Model Evaluation Toolkit (MET; Brown et al., 2009)

is a system developed by the Developmental Testbed Cen-
ter (DTC) for the numerical weather prediction community to
evaluate model performance. MET includes several methods
for the diagnostic and spatial verification of NWPmodel out-
puts. However, MET requires that the input datasets (model
output and the observational data) be reformatted to certain
predefined file formats. LVT shares many features with these
existing environments, but focuses on the native use of obser-
vational and model data sets, since the interpretation of the
data formats and reporting procedures is a critical and time
consuming step in the evaluation process. LVT is designed
as a framework that can be directly used and extended by the
individual users and also includes a number of advanced fea-
tures such as the evaluation of data assimilation diagnostics,
standardized land surface diagnostics and uncertainty and in-
formation theory based analysis features. The following sec-
tions describe the design and capabilities of LVT.

3 Design of the LVT framework

LVT is implemented using object oriented framework de-
sign principles as a modular, extensible and reusable system.
The software architecture of the system follows a three layer
structure, as shown in Fig. 2. LVT core, the top layer, encom-
passes generic modeling features, such as the management
of time, I/O, configuration, logging and geospatial transfor-
mations. The middle layer, called “Abstractions” represents
the extensible interfaces defined for incorporating additional
functionalities into LVT. These include plugin interfaces for

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/
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Table 1. List of datasets supported in LVT.

Dataset Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,
Model (AGRMET) from the Soil moisture, soil temperature,
Air Force Weather Agency (AFWA) Snow conditions, meteorology

NLDAS model outputs Water and energy fluxes
Mitchell et al. (2004) Soil moisture, soil temperature,

snow conditions, meteorology

GLDAS model outputs Water and energy fluxes,
Rodell et al. (2004b) Soil moisture, soil temperature,

snow conditions, meteorology

Canadian Meteorological Center Snow depth
(CMC) snow depth analysis
Brown and Brasnett (2010)

Snow Data Assimilation System Snow depth, snow water
SNODAS; Barrett (2003) equivalent

In-situ measurements

AMMA Water and energy fluxes,
(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,
Measurement (ARM) Soil moisture, soil temperature,
(www.arm.gov) meteorology

Ameriflux Water and energy fluxes
(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,
Observations Project (CEOP) soil moisture, soil temperature,
(www.ceop.net/) meteorology

National Weather Service Snow depth, precipitation,
Cooperative Observer Program (COOP) land surface temperature
(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation
Higgins et al. (1996)

Gridded FLUXNET Water and energy fluxes
Jung et al. (2009)

Finnish Meteorological Institute Snow water equivalent
FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture
(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture
(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/
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Table 1. Continued.

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent
(SNOTEL; www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,
(www.srrb.noaa.gov/surfrad/) downwelling longwave

Southwest Watershed Research Center Soil moisture,
(SWRC; www.tucson.ars.ag.gov/dap/) soil temperature

USGS water data Streamflow
(waterdata.usgs.gov/nwis)

AMSR-E radiances Brightness temperature for
(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, snow depth,
ANSA; Foster et al., 2011 snow water equivalent

GlobSnow; Pulliainen (2006) Snow cover,
(www.globsnow.info/) snow water equivalent

International Satellite Cloud Climatology Land surface temperature
Project; ISCCP; Rossow and Schiffer (1991)
(isccp.nasa.gov)

MODIS/Terra Snow cover 500m Snow cover
MOD10A1; Hall et al. (2006)

MODIS Evapotranspiration product Evapotranspiration
MOD16; Mu et al. (2007)

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE�Land3)
Njoku et al. (2003)

Land Parameter Retrieval Model (LPRM) Soil moisture
from NASA GSFC and VU Amsterdam
Owe et al. (2008)

may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise. Gupta
et al. (2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.
A number of analysis metric types is supported in

LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table 2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect. 5 through a
number of illustrative examples. The availability of this suite

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012
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Table 1. Continued.

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent
(SNOTEL; www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,
(www.srrb.noaa.gov/surfrad/) downwelling longwave

Southwest Watershed Research Center Soil moisture,
(SWRC; www.tucson.ars.ag.gov/dap/) soil temperature

USGS water data Streamflow
(waterdata.usgs.gov/nwis)

AMSR-E radiances Brightness temperature for
(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, snow depth,
ANSA; Foster et al., 2011 snow water equivalent

GlobSnow; Pulliainen (2006) Snow cover,
(www.globsnow.info/) snow water equivalent

International Satellite Cloud Climatology Land surface temperature
Project; ISCCP; Rossow and Schiffer (1991)
(isccp.nasa.gov)

MODIS/Terra Snow cover 500m Snow cover
MOD10A1; Hall et al. (2006)

MODIS Evapotranspiration product Evapotranspiration
MOD16; Mu et al. (2007)

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE�Land3)
Njoku et al. (2003)

Land Parameter Retrieval Model (LPRM) Soil moisture
from NASA GSFC and VU Amsterdam
Owe et al. (2008)

may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise. Gupta
et al. (2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.
A number of analysis metric types is supported in

LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table 2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect. 5 through a
number of illustrative examples. The availability of this suite
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Metrics	  development	  in	  LVT	  
!   A large suite of analysis metrics, including 

accuracy-based metrics, ensemble and uncertainty 
measures, information theory metrics and similarity 
measures has been built into LVT 

Metric Class! Examples!

Accuracy metrics! RMSE, Bias, Correlation!

Ensemble metrics! Mean, Standard deviation, Likelihood!

Uncertainty metrics! Uncertainty importance!

Information theory 
metrics!

Entropy, Complexity!

Data assimilation 
metrics!

Mean, variance, lag correlations of innovation 
distributions!

Spatial similarity metrics! Hausdorff distance!

Scale decomposition 
metrics!

Discrete wavelet transforms!

NASA AMSR-E 

LPRM AMSR-E 
Metric entropy provides a measure of the 
randomness in the soil moisture time series 
at each grid point. The availability of 
information theory metrics in LVT provides 
a way to discriminate model simulations 
based on their information content.   
 

Change in Metric entropy as a result of the assimilation of 
soil moisture retrievals of AMSR-E from NASA and LPRM 
algorithms 



CapabiliQes	  
!   LVT reconciles the differences in spatial and temporal resolutions by bringing the 

model (LIS) and observational datasets to a common (user-specified) space and time 
domain.  

!   Support for datasets in their “native” formats; Once the specific plugin to process a 
particular dataset is built, datasets can be directly employed within LVT. E.g. ARM-
CART measurements.  

!   Supports non-LIS datasets for intercomparisons – (An observational processing mode in 
LVT enables the conversion of an external dataset to a “LIS like” form.  

!   Miscellaneous:  

!   Confidence intervals on analysis statistics 

!   Analysis outputs in ASCII, binary, GriB, NETCDF formats 

!   Probability density functions of computed metrics 

!   Stratify analysis by external datasets 

!   Stratify analysis based on a model variable (e.g. day-night stratification) 

!   Land surface diagnostics 



Analysis	  of	  LIS-‐DA	  outputs	  

!   Deviations from the expected mean and standard deviations of 
the normalized innovation distribution is used as a measure of 
the optimality of the data assimilation configuration.  

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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 "

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Analysis	  of	  LIS-‐UE	  outputs	  

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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!  Uncertainty importance measure: An assessment of the 
relative contribution of each parameter to the ensemble 
spread, computed as the correlation between the simulated 
variable and the the parameter, across the ensemble.  



Scale	  decomposiQon	  features	  
!   Tools to characterize the impact of spatial scale on different 

process variables  

!   E.g. Discrete Wavelet transforms, spatial similarity measures S. V. Kumar et al.: Land surface Verification Toolkit 881
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Fig. 8. Percentage contribution to the total improvement in snow covered area POD at different spatial scales,

generated by a two dimensional discrete Haar wavelet analysis.
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Fig. 8. Percentage contribution to the total improvement in snow
covered area POD at different spatial scales, generated by a two
dimensional discrete Haar wavelet analysis.

an example of scale-decomposition evaluation of snow cover
simulations from the LSMs using LVT.
The intensity-scale approach of Casati et al. (2004), orig-

inally developed for the spatial verification of precipitation
forecasts, is used to perform a scale decomposition analy-
sis. The technique employs a two dimensional discrete Haar
wavelet transform that decomposes a given field into the
sum of orthogonal components at different spatial scales. The
mean squared error (MSE) of the decomposed components at
each spatial scale is used to quantify the scale decomposition
effects.
Using the domain configuration at 1 km spatial resolution

over Afghanistan (used in Sect. 5.1), two model simulations
are conducted using Noah LSM (version 2.7.1); one that em-
ploys a terrain based correction of shortwave radiation input
to the LSM and one that does not include such adjustments.
The terrain-based corrections adjust the incoming shortwave
radiation based on terrain slope and aspect, and these changes
in turn impact the evolution of snow over these terrain. The
improvements in the snow cover simulation as a result of
the terrain-based correction is computed as the difference in
POD fields from the two simulations, generated by compar-
ing against the MOD10A1 (version 4) fractional snow cover
product. The scale-decomposition approach is then applied
to this difference field, to quantify how the improvements in
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales.
Figure 8 shows the result of scale decomposition of the to-

tal improvement field for POD using the two dimensional
discrete Haar wavelet transform. The algorithm computes
successive decompositions of the original field by powers of
2. The percentage contribution to the total improvement at
each coarse spatial scale is shown in Fig. 8. The results indi-
cate that most of the improvements in POD are obtained at
fine spatial scales and the contribution of the scale decreases
with increase in spatial resolution. At scales coarser than
16 km, the percentage contribution drops below 10%. Simi-
lar analysis of scale effects can be performed on other metrics
and variables of interest. This example demonstrates the use

of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
typically used. The incorporation of spatial pattern compar-
isons will aid in further improving the reliability of LSMs
for hydrological applications (Bloschl and Sivapalan, 1995;
Grayson and Bloschl, 2000). A review of spatial similarity
methods in hydrology is provided in Wealands et al. (2005),
which includes techniques based on statistical identification
as well as image processing techniques. In this section, an ex-
ample of using a similarity metric through LVT to compare
snow cover patterns from two different LSMs is presented.
Snow cover estimates using two LSMs, Noah (version 3.2)

and CLM (version 2; Dai et al., 2003), forced with GDAS and
CMAP datasets, are generated over a 100⇥ 100 region near
the Southern Great Plains in the US at 1 km spatial resolution
for a time period of 1 November 2008 to 1 June 2009. The
LSMs have different representations of snow processes, with
Noah employing a simple single snow layer scheme. CLM
includes a more complex five layer snow scheme with param-
eterizations for temporally varying snow albedo, as a func-
tion of snow cover and snow age. Both LSMs simulate tem-
porally varying snow density with evolution of patchy snow
cover. The model simulations are evaluated against the frac-
tional snow cover observations from MODIS (MOD10A1
version 4) using the “Hausdorff distance” similarity metric.
Hausdorff distance (HD) measures the similarity of points

in two finite sets and is not designed to find one-to-one cor-
respondence between points in each set. It is expressed as the
maximum distance of a set to the nearest point in the other
set:

h(M,O) = max
m2M

{min
o2O

{||m � o||}}, (3)

where h(M,O) is the HD value, m and o are points of sets
M (representing model) and O (representing observations),
respectively. ||m � o|| is the norm of the points in the model
and observation spaces and can be computed as the Euclidean
distance between m and o.
Figure 9 shows a time series comparison of the cumulative

HD measure from Noah and CLM snow cover simulations
for the winter season of 1 November 2008 to 1 June 2009.
More temporal variability in HD values is observed during
the snow evolution and ablation periods and it drops during
the peak snow season, suggested by the flattening of the cu-
mulative HD curves. This indicates that there is more con-
sistent agreement in the observational and model simulated

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012

!   Percentage contribution to the total improvement in snow 
covered area POD at different spatial scales, generated by a 
two-dimensional discrete Haar wavelet analysis.  



Hydrological	  Products	  development	  
!   A suite of common, normalized indicators used for drought monitoring has been developed in LVT 

(e.g. Standardized precipitation index (SPI), Standardized Runoff Index (SRI), Standardized Soil 
Water Index (SSWI), Percentiles  

July 30, 2002 

Jan 3, 2006 

Sept 27, 2011 

Root zone soil moisture based 
drought percentiles generated by 
LVT from a LIS simulation 

The capabilities of LVT 
enable an environment for 
performing systematic 
evaluation of the OSSEs 
using various metrics 
including end-use oriented 
measures.  

U.S. Drought 
monitor estimate 



Summary	  

!  An environment for the systematic, comprehensive and 
integrated verification of land surface models with a large 
suite of metrics.  

!  LVT supports the outputs from various LIS subsystems 
including DA, OPT, UE, RTM etc. 

!  Extensible features for incorporating new metrics and 
observation sources. 

!   A conduit for developing hydrological products (e.g. 
drought/flood indicators). 



Questions? 


